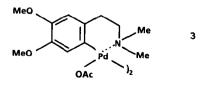
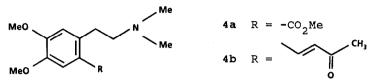

REGIOSELECTIVE AROMATIC RING FUNCTIONALIZATION OF DOPAMINE ANALOGUES

C.D. Liang Department of Medicinal Chemistry Division of G.D. Searle & Co. 4901 Searle Parkway Skokie, Illinois 60077

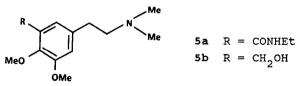

Summary: The selective aromatic ring functonalization of tetramethyl dopamine 2 at C, and C₅ was achieved via alkyllithium-induced carbanion formation at 5 r.t. and $^{-78}$, respectively. The C-6 substitution was affected via palladium acetate mediated cyclometallation.

Dopamine (1, $R_1 = R_2 = H$), one of the most important neurotransmitters in the nervous system, has a relatively simple structure, yet is involved in remarkably complicated biological processes.¹ Our interest in the biological properties and the synthesis of dopamine analogues led us to

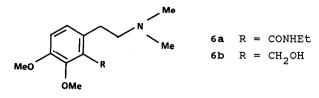


the investigation of selective functionalization of the aromatic ring. Previous work by Heck² on the ortho palladation of benzylamine with palladium acetate was applied by Holton³ to a regioselective orthopalladation of a 3,4 disubstituted benzyl amine. A sterically accessible orthocarbon was included in the arylpalladium complex which enabled the functionalization of this carbon. Our approach centered on the application of this palladium chemistry to the homologous phenethylamines.

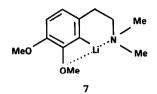
Thus, tetramethyl dopamine 2, was dissolved in benzene and was stirred with 1.1 eq. of Pd(OAc)₂ at r.t. for 72 hrs. The palladated complex² 3obtained was then treated with

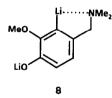


carbon monoxide in methanol² at 40 psi at r.t. Upon basicification with Et_3N , compound **4a** was isolated in a yield of 50%.



The NMR spectra⁴ of **4a** confirmed the position of the ester group with two singlets at 6.70 and 7.43 ppm for the two aromatic protons. Treatment of complex 3 with 1 eq. of NaCl in aqueous acetone followed by methyl vinyl ketone in refluxing toluene containing excess triethylamine⁵ for 1 hr. gave adduct **4b** in 65% yield. Only trans adduct has been isolated.


For the introduction of substituents at C-2 and C-5, lithiation by alkyl lithium was investigated. Earlier, the directing effect of various functional groups attached to the aromatic ring was studied by Slocum⁶ who used tetramethylethylenediamine (TMEDA) as co-solvent in reversing the site of metalation in p-methoxy-N,N-diamethylbenzylamine. This subject was recently reviewed by Narasimhan.⁷ Thus tetramethyl dopamine 2 was metallated directly with sec. BuLi at -78° in ether with 3% TMEDA as co-solvent and the product was quenched with ethylisocyanate at -78°. Compound 5a was the only product isolated (52%).


Similarly, the lithiation product of 2 $(-78^{\circ}$ ether-3% TMEDA) was reacted with paraformaldehyde. The reaction took place at $0^{\circ}C$ and it gave a mixture of products 5b and 6b in a ratio

of 2.6:1⁴ (52% combined isolated yield). This composition probably reflected the equilibraton of C-5 anion initially formed at -78° to the more stable anion 7 at 0° C. Thus n-BuLi was added to 2 in ether at 0° C, followed by stirring at r.t.

overnight. The addition of ethylisocyanate or paraformaldehyde at 0° C gave $6a^4$ in 70% yield or $6b^4$ in 40% yield, respectively; no regioisomers were isolated. (A similar observation was made by Hlasta and Bell⁸ on a dianion metallation reaction of N,N-dimethylvanillylamine (2 n-BuLi, THF, r.t.). A exclusive C-6 lithiated anion 8 was responsible for the single product isolated.)

Acknowledgement: Invaluable discussions with Dr. Gunnar Hanson and Ms. Lydia Swenton are sincerely appreciated.

References:

1.	G. Poste and S.T. Crooke, eds., Dopamine Receptor Agonist, Plenum Press, 1984.
2.	J.M. Thompson and R.F. Heck, <u>J.</u> <u>Org.</u> <u>Chem.</u> , 40 , 2667 (1975).

 R.A. Holton and R.G. Davis, <u>J. Am. Chem. Soc.</u>, 99, 4175 (1977).

4.	Stru	lcture	s were	e coi	nsistent	with	IR,	NMR	and	MS	data.	A11
	new	compo	unds q	jave	correct	analy	ytica	al da	ata.	Y	ields	given
	were	not	optimi	lzed	•							

- **4a**, ¹HNMR (CDCl₂) 2.31(s,6), 2.50(m,2), 3.10(m,2), 3.86(s,3), 3.88(s,3), 3.90(s,3), 6.70(s,1), 7.43(s,1).
- 4b, 2.32(s,6), 2.38(s,3), 2.45(m,2), 2.85(m,2), 3.88(s,3), 3.90(s,3), 6.52(d,J=16Hz,1), 6.70(s,1), 7.05(s,1), 7.77(d,J=16Hz,1).
- 5a, 1.23(t,J=7Hz,3), 2.26(s,6), 2.35-2.90(m,4), 3.47(dt,J=7,6Hz,2), 3.84(s,3), 3.86(s,3), 6.83(d,J=2Hz,1), 7.49(d,J=2Hz,1) 7.80(t,J=6Hz,1).
- 5b, 2.25(s,6), 2.30-2.85(m,4), 3.83(s,3), 3.85(s,3), 4.65(s,1), 4.65(s,1), 6.68(d,J=2Hz,1), 6.73(d,J=2Hz,1).
- 6a, 1.24(t,J=7Hz,3), 2.23(s,6), 2.30-2.90(m,4), 3.45(qd,J=7,6Hz,2), 3.77(s,6), 6.23(t,J=6Hz,1), 6.79(d,J=8Hz,1), 6.91(d,J=8Hz,1).
- 6b, 2.23(s,6), 2.35-2.85(m,4), 3.85(s,3), 3.90(s,3), 4.61(s,2), 6.79(d,J=8Hz,1), 6.90(d,J=8Hz,1).
- 5. R.A. Holton, Tetrahedron Lett., 355 (1977).
- D.W. Slocum and C.A. Jennings, <u>J. Org. Chem.</u>, 41, 3653 (1976).
- N.S. Navasimhan, R.S. Mali and B.K. Kulkarni, <u>Tetrahedron</u>, 39, 1975 (1983).
- D.J. Hlasta and M.R. Bell, <u>Tetrahedron Lett.</u>, 2151 (1985).

gck/153

(Received in USA 30 December 1985)